enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]

  4. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.

  5. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. [2] However, it only stores a predetermined number, , of best states at each level (called the beam width). Only those states are expanded ...

  6. Biconnected component - Wikipedia

    en.wikipedia.org/wiki/Biconnected_component

    It runs in linear time, and is based on depth-first search. This algorithm is also outlined as Problem 22-2 of Introduction to Algorithms (both 2nd and 3rd editions). The idea is to run a depth-first search while maintaining the following information: the depth of each vertex in the depth-first-search tree (once it gets visited), and

  7. Dinic's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dinic's_algorithm

    Even and Itai also contributed to this algorithm by combining BFS and DFS, which is how the algorithm is now commonly presented. [2] For about 10 years of time after the Ford–Fulkerson algorithm was invented, it was unknown if it could be made to terminate in polynomial time in the general case of irrational edge capacities.

  8. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    Knuth showed that Algorithm X can be implemented efficiently on a computer using dancing links in a process Knuth calls "DLX". DLX uses the matrix representation of the exact cover problem, implemented as doubly linked lists of the 1s of the matrix: each 1 element has a link to the next 1 above, below, to the left, and to the right of itself.

  9. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...