Search results
Results from the WOW.Com Content Network
The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language. It supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning functionalities. [4]
A set of NLP sentences, with associated ontology defined, can also be used as a pseudo code that does not provide the details in any underlying high level programming language. In such an application the sentences used become high level abstractions (conceptualisations) of computing procedures that are computer language and machine independent.
Jupyter Notebooks can execute cells of Python code, retaining the context between the execution of cells, which usually facilitates interactive data exploration. [5] Elixir is a high-level functional programming language based on the Erlang VM. Its machine-learning ecosystem includes Nx for computing on CPUs and GPUs, Bumblebee and Axon for ...
Spark NLP is licensed under the Apache 2.0 license. The source code is publicly available on GitHub as well as documentation and a tutorial. Prebuilt versions of Spark NLP are available in PyPi and Anaconda Repository for Python development, in Maven Central for Java & Scala development, and in Spark Packages for Spark development.
The methods of neuro-linguistic programming are the specific techniques used to perform and teach neuro-linguistic programming, [1] [2] which teaches that people are only able to directly perceive a small part of the world using their conscious awareness, and that this view of the world is filtered by experience, beliefs, values, assumptions, and biological sensory systems.
Deeplearning4j can be used via multiple API languages including Java, Scala, Python, Clojure and Kotlin. Its Scala API is called ScalNet. [31] Keras serves as its Python API. [32] And its Clojure wrapper is known as DL4CLJ. [33] The core languages performing the large-scale mathematical operations necessary for deep learning are C, C++ and CUDA C.
Natural Language Processing with Python. O'Reilly Media. ISBN 978-0-596-51649-9. Daniel Jurafsky and James H. Martin (2008). Speech and Language Processing, 2nd edition. Pearson Prentice Hall. ISBN 978-0-13-187321-6. Mohamed Zakaria KURDI (2016). Natural Language Processing and Computational Linguistics: speech, morphology, and syntax, Volume 1 ...
Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. [36] Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions.