Search results
Results from the WOW.Com Content Network
For example, one can exert a kind of "torque" on an electron by putting it in a magnetic field (the field acts upon the electron's intrinsic magnetic dipole moment—see the following section). The result is that the spin vector undergoes precession, just like a classical gyroscope. This phenomenon is known as electron spin resonance (ESR).
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
The atom would then be pulled toward or away from the stronger magnetic field a specific amount, depending on the value of the valence electron's spin. When the spin of the electron is + + 1 / 2 the atom moves away from the stronger field, and when the spin is − + 1 / 2 the atom moves toward it. Thus the beam of silver atoms is ...
When an isolated atom is placed in a magnetic field there is an interaction because each electron in the atom behaves like a magnet, that is, the electron has a magnetic moment. There are two types of interaction. Diamagnetism. When placed in a magnetic field the atom becomes magnetically polarized, that is, it develops an induced magnetic moment.
For an electron, s is 1 ⁄ 2, and m s is either + 1 ⁄ 2 or − 1 ⁄ 2, often called "spin-up" and "spin-down", or α and β. [1] [2] The term magnetic in the name refers to the magnetic dipole moment associated with each type of angular momentum, so states having different magnetic quantum numbers shift in energy in a magnetic field ...
Second, the inherent rotation, or spin, of the electron has a spin magnetic moment. In the Bohr model of the atom, for an electron that is in the orbit of lowest energy, its orbital angular momentum has magnitude equal to the reduced Planck constant, denoted ħ. The Bohr magneton is the magnitude of the magnetic dipole moment of an electron ...
Spin polarization of electrons or of nuclei, often called simply magnetization, is also produced by the application of a magnetic field. Curie law is used to produce an induction signal in electron spin resonance (ESR or EPR) and in nuclear magnetic resonance (NMR). Spin polarization is also important for spintronics, a branch of electronics.