Search results
Results from the WOW.Com Content Network
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !
The tableau form used above to describe the algorithm lends itself to an immediate implementation in which the tableau is maintained as a rectangular (m + 1)-by-(m + n + 1) array. It is straightforward to avoid storing the m explicit columns of the identity matrix that will occur within the tableau by virtue of B being a subset of the columns ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
Let = be a partition of = + +.It is customary to interpret graphically as a Young diagram, namely a left-justified array of square cells with rows of lengths , …,.A (standard) Young tableau of shape is a filling of the cells of the Young diagram with all the integers {, …,}, with no repetition, such that each row and each column form increasing sequences.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
In mathematics, a Young tableau (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties.
The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used. There may also be more than two variables, but higher order contingency tables are difficult to represent visually.