Search results
Results from the WOW.Com Content Network
A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8. [15] However, a characteristic subgroup of a normal subgroup is normal. [16] A group in which normality is transitive is called a T ...
A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.
If H is a subgroup of G, then the largest subgroup of G in which H is normal is the subgroup N G (H). If S is a subset of G such that all elements of S commute with each other, then the largest subgroup of G whose center contains S is the subgroup C G (S). A subgroup H of a group G is called a self-normalizing subgroup of G if N G (H) = H.
A subgroup of H that is invariant under all inner automorphisms is called normal; also, an invariant subgroup. ∀φ ∈ Inn(G): φ(H) ≤ H. Since Inn(G) ⊆ Aut(G) and a characteristic subgroup is invariant under all automorphisms, every characteristic subgroup is normal. However, not every normal subgroup is characteristic.
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.
All normal subgroups of G (and thus whether or not G is simple) can be recognised from its character table. The kernel of a character χ is the set of elements g in G for which χ(g) = χ(1); this is a normal subgroup of G. Each normal subgroup of G is the intersection of the kernels of some of the irreducible characters of G.
In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups: = = where is the trivial subgroup.Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups.
If A and B are normal, then A × B is a normal subgroup of G × H. Moreover, the quotient of the direct products is isomorphic to the direct product of the quotients: (G × H) / (A × B) ≅ (G / A) × (H / B). Note that it is not true in general that every subgroup of G × H is the product of a subgroup of G with a subgroup of H.