Search results
Results from the WOW.Com Content Network
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression. Young's modulus (or Young modulus ) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
Though the compression/heating process of solids can be constant temperature , and constant pressure (isobaric), it can not be a constant volume (isochoric), At high P-T, the pressure for the ideal gas is calculated by the force divided by the area, while the pressure for the solid is calculated from bulk modulus (K, or B) and volume at room ...
where V is volume and p is pressure. The choice to define compressibility as the negative of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. The reciprocal of compressibility at fixed temperature is called the isothermal bulk modulus.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
The compressive strength of the material corresponds to the stress at the red point shown on the curve. In a compression test, there is a linear region where the material follows Hooke's law. Hence, for this region, =, where, this time, E refers to the Young's modulus for compression. In this region, the material deforms elastically and returns ...
This is a combination of a large temperature gradient due to low thermal conductivity, in addition to rapid change in temperature on brittle materials. The change in temperature causes stresses on the surface that are in tension, which encourages crack formation and propagation. Ceramics materials are usually susceptible to thermal shock. [2]
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres. [2]