Search results
Results from the WOW.Com Content Network
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497: c ≡ 4 13 (mod 497) One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445.
This divisor can be chosen to be a power of two, for which division can be replaced by shifting, or a whole number of machine words, for which division can be replaced by omitting words. These divisions are fast, so most of the cost of computing modular products using Montgomery form is the cost of computing ordinary products.
This section has a simplified version of the algorithm, showing how to compute the product of two natural numbers ,, modulo a number of the form +, where = is some fixed number. The integers a , b {\displaystyle a,b} are to be divided into D = 2 k {\displaystyle D=2^{k}} blocks of M {\displaystyle M} bits, so in practical implementations, it is ...
Here, the order of the generator, | g |, is the number of non-zero elements of the field. In the case of GF(2 8) this is 2 8 − 1 = 255. That is to say, for the Rijndael example: (x + 1) 255 = 1. So this can be performed with two look up tables and an integer subtract. Using this idea for exponentiation also derives benefit:
Lighting and reflection calculations, as in the video game OpenArena, use the fast inverse square root code to compute angles of incidence and reflection.. Fast inverse square root, sometimes referred to as Fast InvSqrt() or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in ...
In mathematics and computer science, optimal addition-chain exponentiation is a method of exponentiation by a positive integer power that requires a minimal number of multiplications. Using the form of the shortest addition chain , with multiplication instead of addition, computes the desired exponent (instead of multiple) of the base .
They show that such sequences can be formed by rounding to the nearest integer the values of a double exponential function with middle exponent 2. [1] Ionaşcu and Stănică describe some more general sufficient conditions for a sequence to be the floor of a double exponential sequence plus a constant.