Search results
Results from the WOW.Com Content Network
Cancer-related metabolic changes lead to locus-specific recoding of epigenetic marks. Cancer epigenetics can be precisely reprogramed by cellular metabolism through 1) dose-responsive modulation of cancer epigenetics by metabolites; 2) sequence-specific recruitment of metabolic enzymes; and 3) targeting of epigenetic enzymes by nutritional ...
Excess DNA damage can also increase epigenetic alterations due to errors during DNA repair. [29] [30] Such mutations and epigenetic alterations can give rise to cancer. DDR genes are often repressed in human cancer by epigenetic mechanisms. Such repression may involve DNA methylation of promoter regions or repression of DDR genes by a microRNA.
The central role of DNA damage and epigenetic defects in DNA repair genes in carcinogenesis. DNA damage is considered to be the primary cause of cancer. [17] More than 60,000 new naturally-occurring instances of DNA damage arise, on average, per human cell, per day, due to endogenous cellular processes (see article DNA damage (naturally occurring)).
In addition to well studied epigenetic promoter methylation, more recently there have been substantial findings of epigenetic alterations in cancer due to changes in histone and chromatin architecture and alterations in the expression of microRNAs (microRNAs either cause degradation of messenger RNAs or block their translation) [54] For ...
Epigenetic mechanisms. In biology, epigenetics is the study of heritable traits, or a stable change of cell function, that happen without changes to the DNA sequence. [1] The Greek prefix epi-(ἐπι-"over, outside of, around") in epigenetics implies features that are "on top of" or "in addition to" the traditional (DNA sequence based) genetic mechanism of inheritance. [2]
IR can cause changes in gene expression, disruption of cell cycle arrest, and apoptotic cell death. The extent of how radiation effects cells depends on the type of cell and the dosage of the radiation. Some irradiated cancer cells have been shown to exhibit DNA methylation patterns due to epigenetic mechanisms in the cell.
The epigenetic marks can result in a wide range of effects, including minor phenotypic changes to complex diseases and disorders. [8] The complex cell signaling pathways of multicellular organisms such as plants and humans can make understanding the mechanisms of this inherited process very difficult. [9]
DNA methylation in cancer plays a variety of roles, helping to change the healthy cells by regulation of gene expression to a cancer cells or a diseased cells disease pattern. One of the most widely studied DNA methylation dysregulation is the promoter hypermethylation where the CPGs islands in the promoter regions are methylated contributing ...