Search results
Results from the WOW.Com Content Network
Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
Chordal graphs are precisely the graphs that are both odd-hole-free and even-hole-free (see holes in graph theory). Every chordal graph is a strangulated graph , a graph in which every peripheral cycle is a triangle, because peripheral cycles are a special case of induced cycles.
Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14] Graphs are one of the prime objects of study in discrete mathematics.
A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes: b 0 is the number of connected components; b 1 is the number of one-dimensional or "circular" holes;
A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.
A similar analysis can be performed for non-uniform random graphs, where the probability of including an edge is a function of the number of vertices, and where the decision to include or exclude an edge is made independently with equal probability for all edges. However, for these graphs the situation is more complicated.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.