enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...

  3. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    The class number of a number field is by definition the order of the ideal class group of its ring of integers. Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain). The fundamental theorem of arithmetic says that Q has class number 1.

  4. Irreducible element - Wikipedia

    en.wikipedia.org/wiki/Irreducible_element

    The irreducible elements are the terminal elements of a factorization process; that is, they are the factors that cannot be further factorized. If the irreducible factors of every non-zero non-unit element are uniquely defined, up to the multiplication by a unit, then the integral domain is called a unique factorization domain , but this does ...

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    There is a version of unique factorization for ordinals, though it requires some additional conditions to ensure uniqueness. Any commutative Möbius monoid satisfies a unique factorization theorem and thus possesses arithmetical properties similar to those of the multiplicative semigroup of positive integers.

  7. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  8. Fundamental theorem of ideal theory in number fields

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In number theory, the fundamental theorem of ideal theory in number fields states that every nonzero proper ideal in the ring of integers of a number field admits unique factorization into a product of nonzero prime ideals. In other words, every ring of integers of a number field is a Dedekind domain.

  9. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    As every polynomial ring over a field is a unique factorization domain, every monic polynomial over a finite field may be factored in a unique way (up to the order of the factors) into a product of irreducible monic polynomials. There are efficient algorithms for testing polynomial irreducibility and factoring polynomials over finite fields.