enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  3. Siméon Denis Poisson - Wikipedia

    en.wikipedia.org/wiki/Siméon_Denis_Poisson

    Baron Siméon Denis Poisson (/ p w ɑː ˈ s ɒ̃ /, [1] US also / ˈ p w ɑː s ɒ n /; French: [si.me.ɔ̃ də.ni pwa.sɔ̃]; 21 June 1781 – 25 April 1840) was a French mathematician and physicist who worked on statistics, complex analysis, partial differential equations, the calculus of variations, analytical mechanics, electricity and magnetism, thermodynamics, elasticity, and fluid ...

  4. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    The Poisson process is named after Siméon Poisson, due to its definition involving the Poisson distribution, but Poisson never studied the process. [ 22 ] [ 293 ] There are a number of claims for early uses or discoveries of the Poisson process.

  5. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  6. (a,b,0) class of distributions - Wikipedia

    en.wikipedia.org/wiki/(a,b,0)_class_of_distributions

    The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this

  7. Poisson point process - Wikipedia

    en.wikipedia.org/wiki/Poisson_point_process

    A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...

  8. Discrete-stable distribution - Wikipedia

    en.wikipedia.org/wiki/Discrete-stable_distribution

    Both discrete and continuous classes of stable distribution have properties such as infinite divisibility, power law tails, and unimodality. The most well-known discrete stable distribution is the special case of tjhe Poisson distribution. [4] It is the only discrete-stable distribution for which the mean and all higher-order moments are finite.

  9. Conway–Maxwell–Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Conway–Maxwell–Poisson...

    In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.