enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  4. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data. A multi-head GAT layer can be expressed as follows:

  5. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    Artificial neural network architectures are based on inputs multiplied by weights to obtain outputs (inputs-to-output): feedforward. [2] Recurrent neural networks, or neural networks with loops allow information from later processing stages to feed back to earlier stages for sequence processing. [3]

  6. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models . While individual neurons are simple, many of them together in a network can perform complex tasks.

  7. Artificial neuron - Wikipedia

    en.wikipedia.org/wiki/Artificial_neuron

    The artificial neuron is the elementary unit of an artificial neural network. [1] The design of the artificial neuron was inspired by biological neural circuitry. Its inputs are analogous to excitatory postsynaptic potentials and inhibitory postsynaptic potentials at neural dendrites, or activation.

  8. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  9. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.