Search results
Results from the WOW.Com Content Network
The modeling level is about building models, analyzing them mathematically, gathering and analyzing data, implementing models on computers, solving them, experimenting with them—all this is part of management science research on the modeling level. This level is mainly instrumental, and driven mainly by statistics and econometrics.
SuperCROSS – comprehensive statistics package with ad-hoc, cross tabulation analysis; Systat – general statistics package; The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural ...
Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods.
Quantitative analysis is the use of mathematical and statistical methods in finance and investment management. Those working in the field are quantitative analysts (quants). Quants tend to specialize in specific areas which may include derivative structuring or pricing, risk management, investment management and other related finance occupations.
Analytics is the "extensive use of data, statistical and quantitative analysis, explanatory and predictive models, and fact-based management to drive decisions and actions." It is a subset of business intelligence, which is a set of technologies and processes that uses data to understand and analyze business performance to drive decision-making .
Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field. In general, there exist two separate branches of finance that require advanced quantitative techniques: derivatives pricing on the one hand, and risk and portfolio ...
In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.
One approach is to start with a model in general form that relies on a theoretical understanding of the data-generating process. Then the model can be fit to the data and checked for the various sources of misspecification, in a task called statistical model validation. Theoretical understanding can then guide the modification of the model in ...