Search results
Results from the WOW.Com Content Network
Open problems around exact algorithms by Gerhard J. Woeginger, Discrete Applied Mathematics 156 (2008) 397–405. The RTA list of open problems – open problems in rewriting. The TLCA List of Open Problems – open problems in area typed lambda calculus
In its second phase, the simplex algorithm crawls along the edges of the polytope until it finally reaches an optimum vertex.The criss-cross algorithm considers bases that are not associated with vertices, so that some iterates can be in the interior of the feasible region, like interior-point algorithms; the criss-cross algorithm can also have infeasible iterates outside the feasible region.
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v , an optimization problem might be "find a path from u to v that uses the fewest edges".
Additionally, verifiers require a potential solution known as a certificate, c. For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end. [22] The algorithm will determine if c is a valid Hamiltonian Path in G and if so, accept.
The solution is not allowed to use conditional statements. Patil used a proof in terms of Petri nets to claim that a solution to the cigarette smokers problem using Edsger Dijkstra 's semaphore primitives is impossible, and to suggest that a more powerful primitive is necessary.
An optimization problem asks for finding a "best possible" solution among the set of all possible solutions to a search problem. One example is the maximum independent set problem: "Given a graph G, find an independent set of G of maximum size." Optimization problems are represented by their objective function and their constraints.
The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction. In contrast to the solutions for directed and undirected graphs, it is NP-complete. [11] [12]
A partial-order planner is an algorithm or program which will construct a partial-order plan and search for a solution. The input is the problem description, consisting of descriptions of the initial state, the goal and possible actions. The problem can be interpreted as a search problem where the set of possible partial-order plans is the ...