Search results
Results from the WOW.Com Content Network
Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated, the two copies are paralogous. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox genes in animals.
Sequences are either homologous or not. [3] This involves that the term "percent homology" is a misnomer. [4] As with morphological and anatomical structures, sequence similarity might occur because of convergent evolution, or, as with shorter sequences, by chance, meaning
Arrows show the vestigial structure called Darwin's tubercle. In the context of human evolution, vestigiality involves those traits occurring in humans that have lost all or most of their original function through evolution. Although structures called vestigial often appear functionless, they may retain lesser functions or develop minor new ones.
Homologous structures - structures (body parts/anatomy) which are similar in different species because the species have common descent and have evolved, usually divergently, from a shared ancestor. They may or may not perform the same function. An example is the forelimb structure shared by cats and whales.
Such vestigial structures typically are degenerate, atrophied, or rudimentary, [3] and tend to be much more variable than homologous non-vestigial parts. Although structures commonly regarded "vestigial" may have lost some or all of the functional roles that they had played in ancestral organisms, such structures may retain lesser functions or ...
Strong evidence for evolution comes from the analysis of homologous structures: structures in different species that no longer perform the same task but which share a similar structure. [48] Such is the case of the forelimbs of mammals. The forelimbs of a human, cat, whale, and bat all have strikingly similar bone structures. However, each of ...
Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.
Homologous recombination, genetic recombination in which nucleotide sequences are exchanged between molecules of DNA; Homologous desensitization, a receptor decreases its response to a signalling molecule when that agonist is in high concentration; Homology modeling, a method of protein structure prediction