Search results
Results from the WOW.Com Content Network
Natural gas burning on a gas stove Burning of natural gas coming out of the ground. Natural gas (also called fossil gas, methane gas, or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane (95%) [1] in addition to various smaller amounts of other higher alkanes.
The volumetric energy density of LNG is approximately 2.4 times that of compressed natural gas (CNG), which makes it economical to transport natural gas by ship in the form of LNG. The energy density of LNG is comparable to propane and ethanol but is only 60 percent that of diesel and 70 percent that of gasoline .
This is an extended version of the energy density table from the main Energy density page: Energy densities table ... Natural uranium (0.7% U235) in light-water ...
Natural-gas condensate, also called natural gas liquids, is a low-density mixture of hydrocarbon liquids that are present as gaseous components in the raw natural gas produced from many natural gas fields.
A 1 inch tall uranium fuel pellet is equivalent to about 1 ton of coal, 120 gallons of crude oil, or 17,000 cubic feet of natural gas. [15] In light-water reactors , 1 kg of natural uranium – following a corresponding enrichment and used for power generation– is equivalent to the energy content of nearly 10,000 kg of mineral oil or 14,000 ...
The Wobbe index is expressed in MJ/Nm³ (where 'Nm³' indicates'm³ in Normal conditions), or sometimes in BTU/scf.In the case of natural gas (molar mass 17 g/mol), the typical heating value is around 39 MJ/Nm³ (1,050 BTU/scf) and the specific gravity is approximately 0.59, giving a typical Wobbe index of 51 MJ/Nm³ (1,367 BTU/scf).
Compressed natural gas (CNG) is a fuel gas mainly composed of methane (CH 4), compressed to less than 1% of the volume it occupies at standard atmospheric pressure.It is stored and distributed in hard containers at a pressure of 20–25 megapascals (2,900–3,600 psi; 200–250 bar), usually in cylindrical or spherical shapes.
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...