Search results
Results from the WOW.Com Content Network
Calculate a cell index using comparisons of the contour level(s) with the data values at the cell corners. Use a pre-built lookup table, keyed on the cell index, to describe the output geometry for the cell. Apply linear interpolation along the boundaries of the cell to calculate the exact contour position.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
SageMath is designed partially as a free alternative to the general-purpose mathematics products Maple and MATLAB. It can be downloaded or used through a web site. SageMath comprises a variety of other free packages, with a common interface and language. SageMath is developed in Python.
MATLAB was created in the 1970s by Cleve Moler, who was chairman of the computer science department at the University of New Mexico at the time. It was a free tool for academics. Jack Little, who would eventually set up the company, came across the tool while he was a graduate student in electrical engineering at Stanford University. [3] [4]
A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.
M 2 is useful because it reflects how well a collimated laser beam can be focused to a small spot, or how well a divergent laser source can be collimated. It is a better guide to beam quality than Gaussian appearance because there are many cases in which a beam can look Gaussian, yet have an M 2 value far from unity. [1]
where Pd is the power density in watts per square meter (one W/m 2 is equal to 0.1 mW/cm 2), H 2 = the square of the value of the magnetic field in amperes RMS squared per meter squared, E 2 = the square of the value of the electric field in volts RMS squared per meter squared. [6]
The metre per second squared is the unit of acceleration in the International System of Units (SI). As a derived unit, it is composed from the SI base units of length, the metre, and time, the second.