enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.

  3. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies. Performing these operations requires knowing at least N′ and R 2 mod N.

  4. Cheating in online games - Wikipedia

    en.wikipedia.org/wiki/Cheating_in_online_games

    This is an accepted version of this page This is the latest accepted revision, reviewed on 18 January 2025. Practice of subverting video game rules or mechanics to gain an unfair advantage This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article possibly contains original research. Please ...

  5. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Here, the order of the generator, | g |, is the number of non-zero elements of the field. In the case of GF(2 8) this is 2 8 − 1 = 255. That is to say, for the Rijndael example: (x + 1) 255 = 1. So this can be performed with two look up tables and an integer subtract. Using this idea for exponentiation also derives benefit:

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).

  7. Elliptic curve point multiplication - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve_point...

    The simplest method is the double-and-add method, [2] similar to square-and-multiply in modular exponentiation. The algorithm works as follows: The algorithm works as follows: To compute sP , start with the binary representation for s : ⁠ s = s 0 + 2 s 1 + 2 2 s 2 + ⋯ + 2 n − 1 s n − 1 {\displaystyle s=s_{0}+2s_{1}+2^{2}s_{2}+\cdots +2 ...

  8. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.

  9. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .