Search results
Results from the WOW.Com Content Network
A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". [4] It was first used by 18th century astronomers investigating planetary revolution around the Sun. [5] The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B.
A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier". [4] It was first used by 18th century astronomers investigating planetary revolution around the Sun. [5] The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from A to B.
In an axiomatic formulation of Euclidean geometry, such as that of Hilbert (modern mathematicians added to Euclid's original axioms to fill perceived logical gaps), [1]: 108 a line is stated to have certain properties that relate it to other lines and points. For example, for any two distinct points, there is a unique line containing them, and ...
Lines in a Cartesian plane, or more generally, in affine coordinates, can be described algebraically by linear equations. In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line.
The plane determined by the point P 0 and the vector n consists of those points P, with position vector r, such that the vector drawn from P 0 to P is perpendicular to n. Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points r such that =
In P 2, the line between the points x 1 and x 2 may be represented as a column vector ℓ that satisfies the equations x 1 T ℓ = 0 and x 2 T ℓ = 0, or in other words a column vector ℓ that is orthogonal to x 1 and x 2. The cross product will find such a vector: the line joining two points has homogeneous coordinates given by the equation ...
In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.