Search results
Results from the WOW.Com Content Network
The human eye's red-to-green and blue-to-yellow values of each one-wavelength visible color [citation needed] Human color sensation is defined by the sensitivity curves (shown here normalized) of the three kinds of cone cells: respectively the short-, medium- and long-wavelength types.
Monochromacy (from Greek mono, meaning "one" and chromo, meaning "color") is the ability of organisms to perceive only light intensity without respect to spectral composition. Organisms with monochromacy lack color vision and can only see in shades of grey ranging from black to white. Organisms with monochromacy are called monochromats.
Trichromatic color vision is the ability of humans and some other animals to see different colors, mediated by interactions among three types of color-sensing cone cells. The trichromatic color theory began in the 18th century, when Thomas Young proposed that color vision was a result of three different photoreceptor cells .
The four pigments in a bird's cone cells (in this example, estrildid finches) extend the range of color vision into the ultraviolet. [1]Tetrachromacy (from Greek tetra, meaning "four" and chroma, meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye.
Birds, however, can see some red wavelengths, although not as far into the light spectrum as humans. [46] It is a myth that the common goldfish is the only animal that can see both infrared and ultraviolet light; [47] their color vision extends into the ultraviolet but not the infrared. [48]
Dichromacy in humans is a form of color blindness (color vision deficiency). Normal human color vision is trichromatic, so dichromacy is achieved by losing functionality of one of the three cone cells. The classification of human dichromacy depends on which cone is missing: Protanopia is a severe form of red-green color blindness, in which the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Today, most mammals possess dichromatic vision, corresponding to protanopia red–green color blindness. They can thus see violet, blue, green and yellow light, but cannot see ultraviolet or deep red light. [5] [6] This was probably a feature of the first mammalian ancestors, which were likely small, nocturnal, and burrowing.