enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]

  3. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  4. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

  5. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  6. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    This is not a cyclic quadrilateral. The equality never holds here, and is unequal in the direction indicated by Ptolemy's inequality. The equation in Ptolemy's theorem is never true with non-cyclic quadrilaterals. Ptolemy's inequality is an extension of this fact, and it is a more general form of Ptolemy's theorem.

  7. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    It has also rarely been called a double circle quadrilateral [2] and double scribed quadrilateral. [3] If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. [4]

  8. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Equivalently, it is a quadrilateral whose four sides can be grouped into two pairs of adjacent equal-length sides. [1] [7] A kite can be constructed from the centers and crossing points of any two intersecting circles. [8] Kites as described here may be either convex or concave, although some sources restrict kite to mean only convex kites.