Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.
5 Can we define "x = a is a discontinuity of f(x)" by negating "f(x) is continuous at x = a" ? 1 comment 6 Isn't the phrase "real variable taking real values" redundant?
Since the value at f(0) is a removable discontinuity, = for all a. Thus, the naïve chain rule would suggest that the limit of f ( f ( x )) is 0. However, it is the case that f ( f ( x ) ) = { 1 if x ≠ 0 0 if x = 0 {\displaystyle f(f(x))={\begin{cases}1&{\text{if }}x\neq 0\\0&{\text{if }}x=0\end{cases}}} and so lim x → a f ( f ( x ) ) = 1 ...
A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.
It is the simplest type of non-removable singularity of such a function (see essential singularity). Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0.
In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities.