Search results
Results from the WOW.Com Content Network
If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M.
Thus, geodesy represents the figure of the Earth as an oblate spheroid. The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other ...
The geometric center of the Earth, i.e. the arithmetic mean position of all points within the oblate spheroid that is the precise shape of the Earth. geocentric With reference to, or pertaining to, the geometric center of the Earth; [14] centered upon the Earth, e.g. a geocentric orbit. geocentric zenith
Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors , which contributed to the awarding of the 1926 Nobel Prize in ...
Because of its rapid rate of rotation, one turn in ten hours, Jupiter is an oblate spheroid; it has a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries; the most obvious result of this is the Great Red Spot , a giant ...
A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity, or oblateness.
For a Maclaurin spheroid of eccentricity greater than 0.812670, [3] a Jacobi ellipsoid of the same angular momentum has lower total energy. If such a spheroid is composed of a viscous fluid (or in the presence of gravitational radiation reaction), and if it suffers a perturbation which breaks its rotational symmetry, then it will gradually elongate into the Jacobi ellipsoidal form, while ...
An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.