Search results
Results from the WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
The cross-product and MLE odds ratio estimate; Mid-p exact p-values and confidence limits for the odds ratio; Calculations of rate ratios and rate differences with confidence intervals and statistical tests. For stratified 2x2 tables with count data, OpenEpi provides: Mantel-Haenszel (MH) and precision-based estimates of the risk ratio and odds ...
Vector: 3 editable tables, preset last matrix/vector result, vector arithmetic (addition, subtraction, scalar multiplication, matrix-vector multiplication (vector interpreted as column)), dot product, cross product; Polynomial solver: 2nd/3rd degree solver. Linear equation solver: 2x2 and 3x3 solver. Base-N operations: XNOR, NAND; Expression ...
As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5] Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix. This implies that in coordinate frames different from the one in which the tensor was ...
If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
Matrix multiplication completed in 2n-1 steps for two n×n matrices on a cross-wired mesh. There are a variety of algorithms for multiplication on meshes . For multiplication of two n × n on a standard two-dimensional mesh using the 2D Cannon's algorithm , one can complete the multiplication in 3 n -2 steps although this is reduced to half ...
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The cross product occurs frequently in the study of rotation, where it is used to calculate torque and angular momentum. It can also be used to calculate the Lorentz force exerted on a charged particle moving in a magnetic field. The dot product is used to determine the work done by a constant force.