enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    The central limit theorem may be established for the simple random walk on a crystal lattice (an infinite-fold abelian covering graph over a finite graph), and is used for design of crystal structures.

  3. Gaussian random field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_random_field

    Where applicable, the central limit theorem dictates that at any point, the sum of these individual plane-wave contributions will exhibit a Gaussian distribution. This type of GRF is completely described by its power spectral density , and hence, through the Wiener–Khinchin theorem , by its two-point autocorrelation function , which is ...

  4. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    Comparison of probability density functions, () for the sum of fair 6-sided dice to show their convergence to a normal distribution with increasing , in accordance to the central limit theorem. In the bottom-right graph, smoothed profiles of the previous graphs are rescaled, superimposed and compared with a normal distribution (black curve).

  6. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.

  7. Law of the iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_iterated_logarithm

    The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:

  8. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    Then according to the central limit theorem, the distribution of Z n approaches the normal N(0, ⁠ 1 / 3 ⁠) distribution. This convergence is shown in the picture: as n grows larger, the shape of the probability density function gets closer and closer to the Gaussian curve.

  9. Lindeberg's condition - Wikipedia

    en.wikipedia.org/wiki/Lindeberg's_condition

    In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.