Search results
Results from the WOW.Com Content Network
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learning approaches, including stochastic gradient descent for training deep neural networks, and ensemble methods (such as random forests and gradient boosted trees).
This image represents an example of overfitting in machine learning. The red dots represent training set data. The green line represents the true functional relationship, while the blue line shows the learned function, which has been overfitted to the training set data. In machine learning problems, a major problem that arises is that of ...
The loss function is a function that maps values of one or more variables onto a real number intuitively representing some "cost" associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.
Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]
Effect of triplet loss minimization in training: the positive is moved closer to the anchor than the negative. Triplet loss is a loss function for machine learning algorithms where a reference input (called anchor) is compared to a matching input (called positive) and a non-matching input (called negative). The distance from the anchor to the ...
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [3]