Search results
Results from the WOW.Com Content Network
FLLHGR (FDLRX, MFLPD) is a limit on fuel rod power in the reactor core. For new fuel, this limit is typically around 13 kW/ft (43 kW/m) of fuel rod. This limit ensures that the centerline temperature of the fuel pellets in the rods will not exceed the melting point of the fuel material (uranium/gadolinium oxides) in the event of the worst ...
In modern BWR fuel bundles, there are either 91, 92, or 96 fuel rods per assembly depending on the manufacturer. A range between 368 assemblies for the smallest and 800 assemblies for the largest BWR in the U.S. form the reactor core. Each BWR fuel rod is backfilled with helium to a pressure of about 3 standard atmospheres (300 kPa).
Value: Each fuel rod is worth 10 Salvage Points. Special Difficulties: Crusher activated by Scavenger interference. Time Limit: 4.00 Minutes; Details: In this test the four scavengers entered the waste crusher inside which was a large amount of debris typically to waist height, and a full complement of ten fuel rods.
Transitioned from 7×7 to 8×8 fuel bundle with longer and thinner fuel rods that fit within the same external footprint as the previous 7×7 fuel bundle, reduced fuel duty (to 13.4 kW/ft (44 kW/m)), improved compact jet pumps with higher circulation capacity (available with 16–24 total jet pumps depending on the configuration), increased ...
Inside each fuel rod, pellets of uranium, or more commonly uranium oxide, are stacked end to end. Also inside the core are control rods, filled with pellets of substances like boron or hafnium or cadmium that readily capture neutrons. When the control rods are lowered into the core, they absorb neutrons, which thus cannot take part in the chain ...
Control rod assembly for a pressurized water reactor, above fuel element Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium . Their compositions include chemical elements such as boron , cadmium , silver , hafnium , or indium , that are capable of absorbing many neutrons without ...
The bismuth phosphate process has been replaced by solvent extraction processes. The bismuth phosphate process was designed to extract plutonium from aluminium-clad nuclear fuel rods, containing uranium. The fuel was decladded by boiling it in caustic soda. After decladding, the uranium metal was dissolved in nitric acid.
The fuel element or assembly is arranged in an array of cells or bundles. Each bundle consists of multiple fuel rods or pins. Each fuel rod is composed of several cylindrical fuel pellets of enriched uranium, typically as UO 2 inserted into zirconium-alloy tubes. Each reactor core can be loaded with multiple bundles of these reactor bundles.