Search results
Results from the WOW.Com Content Network
Tin-121m (121m Sn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years. In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield ...
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
The unstable tin isotopes have half-lives of less than a year except for tin-126, which has a half-life of about 230,000 years. Tin-100 and tin-132 are two of the very few nuclides with a "doubly magic" nucleus which despite being unstable, as they have very uneven neutron–proton ratios, are the endpoints beyond which tin isotopes lighter ...
This is the longest half-life directly measured for any unstable isotope; [4] only the half-life of tellurium-128 is longer. [ citation needed ] Of the chemical elements, only 1 element ( tin ) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable ...
3.1 abundance, half-life trace, synthetic, stable by keyboard code. ... Main isotopes of tin; Main isotopes [1] Decay; abundance half-life (t 1/2) mode product ...
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
See isotopes of tantalum. However, the half-life of this nuclear isomer is so long that it has never been observed to decay, and it thus is an "observationally stable" primordial nuclide, a rare isotope of tantalum. This is the only nuclear isomer with a half-life so long that it has never been observed to decay. It is thus included in this list.
This is still a short half-life relative to many other known modes of radioactive decay and it is in the middle of the range of half lives for radiopharmaceuticals used for medical imaging. After gamma emission or internal conversion, the resulting ground-state technetium-99 then decays with a half-life of 211,000 years to stable ruthenium-99 ...