Search results
Results from the WOW.Com Content Network
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
The matrix of the linear map mapping the vector of the entries of a matrix to the vector of a part of the entries (for example the vector of the entries that are not below the main diagonal) See vectorization: Exchange matrix: The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
In the linear case the function can be expressed in terms of matrices: =, where y is an n × 1 output vector, x is a k × 1 vector of inputs, and A is an n × k matrix of parameters. Closely related is the affine case (linear up to a translation ) where the function takes the form y = A x + b , {\displaystyle \mathbf {y} =A\mathbf {x} +\mathbf ...
defines a variable named array (or assigns a new value to an existing variable with the name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 (the initial value), increments with each step from the previous value by 2 (the increment value), and stops once it reaches (or is about to exceed) 9 ...
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
The matrix left-division operator concisely expresses some semantic properties of matrices. As in the scalar equivalent, if the (determinant of the) coefficient (matrix) A is not null then it is possible to solve the (vectorial) equation A * x = b by left-multiplying both sides by the inverse of A: A −1 (in both MATLAB and GNU Octave ...