enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    The training and test-set errors can be measured without bias and in a fair way using accuracy, precision, Auc-Roc, precision-recall, and other metrics. Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function.

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  4. List of psychological research methods - Wikipedia

    en.wikipedia.org/wiki/List_of_psychological...

    A wide range of research methods are used in psychology. These methods vary by the sources from which information is obtained, how that information is sampled, and the types of instruments that are used in data collection. Methods also vary by whether they collect qualitative data, quantitative data or both.

  5. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  6. Vladimir Vapnik - Wikipedia

    en.wikipedia.org/wiki/Vladimir_Vapnik

    Vladimir Naumovich Vapnik (Russian: Владимир Наумович Вапник; born 6 December 1936) is a statistician, researcher, and academic.He is one of the main developers of the Vapnik–Chervonenkis theory of statistical learning [1] and the co-inventor of the support-vector machine method and support-vector clustering algorithms.

  7. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .

  8. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    The hyperplane learned in feature space by an SVM is an ellipse in the input space. In machine learning , the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original ...

  9. Foundations of statistics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_statistics

    Neither of the test methods has been completely abandoned, as they are extensively utilized for different objectives. Textbooks have integrated both test methods into the framework of hypothesis testing. Some mathematicians argue, with a few exceptions, that significance tests can be considered a specific instance of hypothesis tests.