Search results
Results from the WOW.Com Content Network
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...
An oriented -dimensional Riemannian manifold (,) has a unique -form called the Riemannian volume form. [7] The Riemannian volume form is preserved by orientation-preserving isometries. [8] The volume form gives rise to a measure on which allows measurable functions to be integrated. [citation needed] If is compact, the volume of is . [7]
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.
The second term in the formula represents the exterior derivative of the interior product of the volume form with the vector field on S, defined as the tangential projection of W t. Via Cartan's magic formula , this term can also be written as the Lie derivative of the volume form relative to the tangential projection.
In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the Riemannian metric and is torsion-free. The fundamental theorem of Riemannian geometry states that there is a unique ...
the associated hermitian form H(v, w)=α R (iv, w) + iα R (v, w) is positive-definite. (The hermitian form written here is linear in the first variable.) Riemann forms are important because of the following: The alternatization of the Chern class of any factor of automorphy is a Riemann form.