enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    Due to differences in emissivity, this infrared picture of a cold beer can shows vastly different (and incorrect) temperature values depending on the surface material. Reflections (like on the blank end of the can and the countertop) make accurate measurements of reflective surfaces impossible.

  3. Albedo - Wikipedia

    en.wikipedia.org/wiki/Albedo

    Mid-to-high-latitude forests have a much lower albedo during snow seasons than flat ground, thus contributing to warming. Modeling that compares the effects of albedo differences between forests and grasslands suggests that expanding the land area of forests in temperate zones offers only a temporary mitigation benefit. [53] [54] [55] [56]

  4. Bond albedo - Wikipedia

    en.wikipedia.org/wiki/Bond_albedo

    The Bond albedo is a value strictly between 0 and 1, as it includes all possible scattered light (but not radiation from the body itself). This is in contrast to other definitions of albedo such as the geometric albedo, which can be above 1. In general, though, the Bond albedo may be greater or smaller than the geometric albedo, depending on ...

  5. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Emissivity can in general depend on wavelength, direction, and polarization. However, the emissivity which appears in the non-directional form of the Stefan–Boltzmann law is the hemispherical total emissivity, which reflects emissions as totaled over all wavelengths, directions, and polarizations. [3]: 60

  6. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.

  7. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Average and overall absorptivity and emissivity data are often given for materials with values which differ from each other. For example, white paint is quoted as having an absorptivity of 0.16, while having an emissivity of 0.93. [13]

  8. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    The albedo and emissivity of the Moon are about 0.1054 [45] and 0.95 [46] respectively, yielding an estimated temperature of about 1.36 °C. Estimates of the Earth's average albedo vary in the range 0.3–0.4, resulting in different estimated effective temperatures.

  9. Planetary equilibrium temperature - Wikipedia

    en.wikipedia.org/wiki/Planetary_equilibrium...

    The planet has an albedo that depends on the characteristics of its surface and atmosphere, and therefore only absorbs a fraction of radiation. The planet absorbs the radiation that isn't reflected by the albedo, and heats up. One may assume that the planet radiates energy like a blackbody at some temperature according to the Stefan–Boltzmann ...