Search results
Results from the WOW.Com Content Network
which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the k – 1 equations =, …, + = +, giving a k-dimensional system of the first order in the stacked variable vector [+] in terms of its once-lagged value, and taking the characteristic equation of this system's matrix.
It also supports multiple equations in one graph, exporting equations to LaTeX format, and comes with several pre-made equation examples. It is one of the few sophisticated graphing programs available capable of easily exporting clean vector art for use in printed documents, but exporting 3D graphs to vector is not possible.
In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra features. [8] In September 2023, Desmos released a beta for a 3D calculator, which added features on top of the 2D calculator, including cross products, partial derivatives and double-variable parametric equations. [9]
Together with Kirchhoff's theorem, it can be used to calculate the number of spanning trees for a given graph. The sparsest cut of a graph can be approximated through the Fiedler vector — the eigenvector corresponding to the second smallest eigenvalue of the graph Laplacian — as established by Cheeger's inequality.
In graph theory, eigenvector centrality (also called eigencentrality or prestige score [1]) is a measure of the influence of a node in a connected network.Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes.
An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]
For any smooth function f on a Riemannian manifold (M, g), the gradient of f is the vector field ∇f such that for any vector field X, (,) =, that is, ((),) = (), where g x ( , ) denotes the inner product of tangent vectors at x defined by the metric g and ∂ X f is the function that takes any point x ∈ M to the directional derivative of f ...
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .