Search results
Results from the WOW.Com Content Network
That is, if there is a sorting algorithm which can sort in O(S) time per key, where S is some function of n and word size, [22] then one can use the given procedure to create a priority queue where pulling the highest-priority element is O(1) time, and inserting new elements (and deleting elements) is O(S) time.
A priority queue is an abstract data-type similar to a regular queue or stack. Each element in a priority queue has an associated priority. In a priority queue, elements with high priority are served before elements with low priority. Priority queues support the following operations: insert: add an element to the queue with an associated priority.
A van Emde Boas tree (Dutch pronunciation: [vɑn ˈɛmdə ˈboːɑs]), also known as a vEB tree or van Emde Boas priority queue, is a tree data structure which implements an associative array with m-bit integer keys. It was invented by a team led by Dutch computer scientist Peter van Emde Boas in 1975. [1]
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in which the nodes have d children instead of 2. [1] [2] [3] Thus, a binary heap is a 2-heap, and a ternary heap is a 3-heap. According to Tarjan [2] and Jensen et al., [4] d-ary heaps were invented by Donald B. Johnson in 1975. [1]
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
The bucket queue is the priority-queue analogue of pigeonhole sort (also called bucket sort), a sorting algorithm that places elements into buckets indexed by their priorities and then concatenates the buckets. Using a bucket queue as the priority queue in a selection sort gives a form of the pigeonhole sort algorithm. [2]
Like heapsort, smoothsort organizes the input into a priority queue and then repeatedly extracts the maximum. Also like heapsort, the priority queue is an implicit heap data structure (a heap-ordered implicit binary tree), which occupies a prefix of the array. Each extraction shrinks the prefix and adds the extracted element to a growing sorted ...