Search results
Results from the WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) ' impassable ') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
For a quasi-static adiabatic process, the change in internal energy is equal to minus the integral amount of work done by the system, so the work also depends only on the initial and final states of the process and is one and the same for every intermediate path. As a result, the work done by the system also depends on the initial and final states.
An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...
Adiabatic process: occurs without loss or gain of energy by heat; Isenthalpic process: occurs at a constant enthalpy; Isentropic process: a reversible adiabatic process, occurs at a constant entropy; Isobaric process: occurs at constant pressure; Isochoric process: occurs at constant volume (also called isometric/isovolumetric)
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress. Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a P-V diagram.
Isentropic process (adiabatic and reversible) ... Work done by an expanding gas Process = ... Net work done in cyclic processes = ...
For all adiabatic process that takes a system from a given initial state to a given final state, irrespective of how the work is done, the respective eventual total quantities of energy transferred as work are one and the same, determined just by the given initial and final states.
Most steady-flow devices operate under adiabatic conditions, and the ideal process for these devices is the isentropic process. The parameter that describes how efficiently a device approximates a corresponding isentropic device is called isentropic or adiabatic efficiency.