Search results
Results from the WOW.Com Content Network
In many programming languages, map is a higher-order function that applies a given function to each element of a collection, e.g. a list or set, returning the results in a collection of the same type.
Note that fmap, join, append and bind are well-defined, since they're applied to progressively deeper arguments at each recursive call. The list type is an additive monad, with nil as the monadic zero and append as monadic sum. Lists form a monoid under the append operation. The identity element of the monoid is the empty list, nil.
Following Lisp, other high-level programming languages which feature linked lists as primitive data structures have adopted an append. To append lists, as an operator, Haskell uses ++, OCaml uses @. Other languages use the + or ++ symbols to nondestructively concatenate a string, list, or array.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
Go has built-in, language-level support for associative arrays, called "maps". A map's key type may only be a boolean, numeric, string, array, struct, pointer, interface, or channel type. A map type is written: map[keytype]valuetype. Adding elements one at a time:
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})