Search results
Results from the WOW.Com Content Network
Unlike efficacy (effectiveness), which is a unit of measurement, efficiency is a unitless number expressed as a percentage, requiring only that the input and output units be of the same type. The luminous efficiency of a light source is thus the percentage of luminous efficacy per theoretical maximum efficacy at a specific wavelength.
A realistic indication of energy efficiency over an entire year can be achieved by using seasonal COP or seasonal coefficient of performance (SCOP) for heat. Seasonal energy efficiency ratio (SEER) is mostly used for air conditioning. SCOP is a new methodology which gives a better indication of expected real-life performance of heat pump ...
In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.
As can be seen in the formula for maximum theoretical thermal efficiency in an ideal Brayton cycle engine, a high pressure ratio leads to higher thermal efficiency: = where PR is the pressure ratio and gamma the heat capacity ratio of the fluid, 1.4 for air.
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
A premium efficiency electric motor: more than 90% (see Main Article: Premium efficiency). A large power transformer used in the electrical grid may have efficiency of more than 99%. Early 19th century transformers were much less efficient, wasting up to a third of the energy passing through them.
The third way fin performance can be described is with overall surface efficiency, η o = Q ˙ t h A t θ b , {\displaystyle \eta _{o}={\frac {{\dot {Q}}_{t}}{hA_{t}\theta _{b}}},} where A t {\displaystyle A_{t}} is the total area and Q ˙ t {\displaystyle {\dot {Q}}_{t}} is the sum of the heat transfer from the unfinned base area and all of ...