Search results
Results from the WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
Proof without words of the Nicomachus theorem (Gulley (2010)) that the sum of the first n cubes is the square of the n th triangular number. In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text.
The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive steps. According to Schopenhauer, the proof is a "brilliant piece of perversity". [6] The basic idea of the Bride's Chair proof of the Pythagorean theorem
Ne’Kiya Jackson and Calcea Johnson have published a paper on a new way to prove the 2000-year-old Pythagorean theorem. Their work began in a high school math contest.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The observation that subtracting 2A from c 2 yields (b − a) 2 need only be augmented by a geometric rearrangement of areas corresponding to a 2, b 2, and −2A = −2ab to obtain rearrangement proof of the rule, one which is well known in modern times and which is also suggested in the third century CE in Zhao Shuang's commentary on the ...
An elementary proof is a proof which only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis . For some time it was thought that certain theorems, like the prime number theorem , could only be proved using "higher" mathematics.
The five-piece dissections used in the proofs by Al-Nayrizi and Thābit ibn Qurra (left) and by Henry Perigal (right). This tiling is called the Pythagorean tiling because it has been used as the basis of proofs of the Pythagorean theorem by the ninth-century Islamic mathematicians Al-Nayrizi and Thābit ibn Qurra, and by the 19th-century British amateur mathematician Henry Perigal.