Search results
Results from the WOW.Com Content Network
Bose's "error" leads to what is now called Bose–Einstein statistics. Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist ...
Bose first sent a paper to Einstein on the quantum statistics of light quanta (now called photons), in which he derived Planck's quantum radiation law without any reference to classical physics. Einstein was impressed, translated the paper himself from English to German and submitted it for Bose to the Zeitschrift für Physik , which published ...
Photon statistics is the theoretical and experimental study of the statistical ... the Bose-Einstein ... An example of light exhibiting sub-Poissonian statistics is ...
The thermodynamics of an ideal Bose gas is best calculated using the grand canonical ensemble.The grand potential for a Bose gas is given by: = = (). where each term in the sum corresponds to a particular single-particle energy level ε i; g i is the number of states with energy ε i; z is the absolute activity (or "fugacity"), which may also be expressed in terms of the chemical ...
Similarly the Bose–Einstein correlations between two neutral pions are somewhat stronger than those between two identically charged ones: in other words two neutral pions are “more identical” than two negative (positive) pions. The surprising nature of these special Bose–Einstein correlations effects made headlines in the literature. [5]
When this is the case, the number of photons is not conserved. In the derivation of Bose–Einstein statistics, when the restraint on the number of particles is removed, this is effectively the same as setting the chemical potential (μ) to zero. Furthermore, since photons have two spin states, the value of f is 2. The spectral energy density ...
As can be seen, even a system of two particles exhibits different statistical behaviors between distinguishable particles, bosons, and fermions. In the articles on Fermi–Dirac statistics and Bose–Einstein statistics, these principles are extended to large number of particles, with qualitatively similar results.
Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics we use the Thomas–Fermi approximation (gas in a box) and go to the limit of a very large trap, and express the degeneracy of the energy states as a differential, and summations over states as integrals.