enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The line perpendicular to the directrix and passing through the focus (that is, the line that splits the parabola through the middle) is called the "axis of symmetry". The point where the parabola intersects its axis of symmetry is called the " vertex " and is the point where the parabola is most sharply curved.

  3. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    a line, if the plane is parallel to the z-axis, and has an equation of the form + =, a parabola, if the plane is parallel to the z-axis, and the section is not a line, a pair of intersecting lines, if the plane is a tangent plane, a hyperbola, otherwise. STL hyperbolic paraboloid model

  4. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    A general straight-line thread connects the two points (0, k−t) and (t, 0), where k is an arbitrary scaling constant, and the family of lines is generated by varying the parameter t. From simple geometry, the equation of this straight line is y = −(k − t)x/t + k − t. Rearranging and casting in the form F(x,y,t) = 0 gives:

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...

  6. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center.

  7. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The solutions of this equation are the x-values of the critical points and are given, using the quadratic formula, by =. The sign of the expression Δ 0 = b 2 – 3ac inside the square root determines the number of critical points. If it is positive, then there are two critical points, one is a local maximum, and the other is a local minimum.

  8. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This is the equation of an ellipse (<) or a parabola (=) or a hyperbola (>). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram). All of these non-degenerate conics have, in common, the origin as a vertex (see diagram).

  9. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Inversion of a line is a circle containing the center of inversion; or it is the line itself if it contains the center; Inversion of a circle is another circle; or it is a line if the original circle contains the center; Inversion of a parabola is a cardioid; Inversion of hyperbola is a lemniscate of Bernoulli