Search results
Results from the WOW.Com Content Network
[3] [4] [5] Thomas Young's experiment with light was part of classical physics long before the development of quantum mechanics and the concept of wave–particle duality. He believed it demonstrated that the Christiaan Huygens' wave theory of light was correct, and his experiment is sometimes referred to as Young's experiment [6] or Young's ...
The wave function presents a much different explanation of the observed light and dark bands in a double slit experiment. In this conception, the photon follows a path which is a probabilistic choice of one of many possible paths in the electromagnetic field.
The weakness of the wave theory was that light waves, like sound waves, would need a medium for transmission. The existence of the hypothetical substance luminiferous aether proposed by Huygens in 1678 was cast into strong doubt in the late nineteenth century by the Michelson–Morley experiment.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
By definition, visible light is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis.
The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, [A 1] a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between April and July 1887 by American physicists Albert A. Michelson and Edward W. Morley at what is ...
In part correct, [2] being able to successfully explain refraction, reflection, rectilinear propagation and to a lesser extent diffraction, the theory would fall out of favor in the early nineteenth century, as the wave theory of light amassed new experimental evidence. [3] The modern understanding of light is the concept of wave-particle duality.
The early-to-mid 1800s were a period of intense debate on the particle-versus-wave nature of light. Although the observation of the Arago spot in 1819 may have seemed to settle the matter definitively in favor of Fresnel's wave theory of light, various concerns continued to appear to be addressed more satisfactorily by Newton's corpuscular ...