Search results
Results from the WOW.Com Content Network
Lysine is an amino acid with a positive charge when unmodified. Lysines on the amino terminal tails of histones have a tendency to weaken the chromatin's overall structure. Addition of an acetyl group, which carries a negative charge, effectively removes the positive charge and hence, reduces the interaction between the histone tail and the ...
The single-letter amino acid abbreviation (e.g., K for Lysine) and the amino acid position in the protein; The type of modification (Me: methyl, P: phosphate, Ac: acetyl, Ub: ubiquitin) The number of modifications (only Me is known to occur in more than one copy per residue. 1, 2 or 3 is mono-, di- or tri-methylation)
Lysine ball and stick model spinning. Lysine (symbol Lys or K) [2] is an α-amino acid that is a precursor to many proteins.Lysine contains an α-amino group (which is in the protonated −NH + 3 form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group (which is in the deprotonated −COO − form when the lysine is dissolved in water at physiological pH ...
Double-stranded DNA phage lysins tend to lie within the 25 to 40 kDa range in terms of size. A notable exception is the streptococcal PlyC endolysin, which is 114 kDa. PlyC is not only the biggest and most potent lysin, but also structurally unique since it is composed of two different gene products, PlyCA and PlyCB, with a ratio of eight PlyCB subunits for each PlyCA in its active conformation.
Histone tails and their function in chromatin formation. Histone acetyltransferases serve many biological roles inside the cell. Chromatin is a combination of proteins and DNA found in the nucleus, and it undergoes many structural changes as different cellular events such as DNA replication, DNA repair, and transcription occur. [25]
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
Histone methylation occurs on arginine, lysine and histidine amino acids residues. Mono-, di- or tri-methylation has been discovered on histone H2A, H3 and H4. [ 10 ] Histone methylation has been associated with various cellular functions such as transcription, DNA replication, and DNA damage response including repair, heterochromatin formation ...
The major enzymatic functions carried out at the replication fork are well conserved from prokaryotes to eukaryotes, but the replication machinery in eukaryotic DNA replication is a much larger complex, coordinating many proteins at the site of replication, forming the replisome.