Search results
Results from the WOW.Com Content Network
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
If successful, the known equation is enough to report the frequency distribution and a table of data will not be required. Further, the equation helps interpolation and extrapolation. However, care should be taken with extrapolating a cumulative frequency distribution, because this may be a source of errors.
Computable Document Format (CDF) is an electronic document format [1] designed to allow authoring dynamically generated, interactive content. [2] CDF was created by Wolfram Research , and CDF files can be created using Mathematica . [ 3 ]
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
The probability mass function (pmf) for the mass fraction of chains of length is: () = (). In this equation, k is the number of monomers in the chain, [ 1 ] and 0<a<1 is an empirically determined constant related to the fraction of unreacted monomer remaining.
Probability distribution calculator as used in the CumFreq software. The software offers the option to use a probability distribution calculator. The cumulative frequency and the return period are give as a function of data value as input. In addition, the confidence intervals are shown.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
This leads directly to the probability mass function of a Log(p)-distributed random variable: = for k ≥ 1, and where 0 < p < 1. Because of the identity above, the distribution is properly normalized. The cumulative distribution function is