Search results
Results from the WOW.Com Content Network
This result is an approximation that fails to capture certain interesting aspects of the evolution a free quantum particle. Notably, the width of the wave packet, as measured by the uncertainty in the position, grows linearly in time for large times. This phenomenon is called the spread of the wave packet for a free particle.
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
In this case the dispersion relation allows for two modes: a barotropic mode where the free surface amplitude is large compared with the amplitude of the interfacial wave, and a baroclinic mode where the opposite is the case – the interfacial wave is higher than and in antiphase with the free surface wave. The dispersion relation for this ...
The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half. The dispersion relation for deep water waves is often written as
The simplest approach is to focus on the description in terms of plane matter waves for a free particle, that is a wave function described by =, where is a position in real space, is the wave vector in units of inverse meters, ω is the angular frequency with units of inverse time and is time.
A wave along the length of a stretched Slinky toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves (vibrations in pressure, a particle of displacement, and particle velocity propagated in an elastic medium) and seismic P waves (created by earthquakes and explosions).
The interaction picture is useful in dealing with changes to the wave functions and observables due to interactions. Most field-theoretical calculations [4] use the interaction representation because they construct the solution to the many-body Schrödinger equation as the solution to the free-particle problem plus some unknown interaction parts.
For a pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves , experiences a net Stokes drift velocity in the direction of wave propagation .