Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.
The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve. An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.
The sensitivity of the instrument comes from the weak spring constant of the fiber, so a very weak force causes a large rotation of the bar. In Coulomb's experiment, the torsion balance was an insulating rod with a metal-coated ball attached to one end, suspended by a silk thread.
A linear constant coefficient system is stiff if all of its eigenvalues have negative real part and the stiffness ratio is large. Stiffness occurs when stability requirements, rather than those of accuracy, constrain the step length. Stiffness occurs when some components of the solution decay much more rapidly than others. [3]
In a mass–spring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as: = In an electrical network , ω is a natural angular frequency of a response function f ( t ) if the Laplace transform F ( s ) of f ( t ) includes the term Ke − st , where s = σ + ω i for a real σ , and K ≠ 0 is a constant ...
The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient: