Ad
related to: example of linear combination of functionseducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).
In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors .
The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. [1]
Iterated functions and flows occur naturally in the study of fractals and dynamical systems. To avoid ambiguity, some mathematicians [citation needed] choose to use ∘ to denote the compositional meaning, writing f ∘n (x) for the n-th iterate of the function f(x), as in, for example, f ∘3 (x) meaning f(f(f(x))).
Any linear combination of even functions is even, and the even functions form a vector space over the reals. Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the reals. In fact, the vector space of all real functions is the direct sum of the subspaces of even and odd functions. This ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .
This variational characterization of eigenvalues leads to the Rayleigh–Ritz method: choose an approximating as a linear combination of basis functions (for example trigonometric functions) and carry out a finite-dimensional minimization among such linear combinations. This method is often surprisingly accurate.
Ad
related to: example of linear combination of functionseducator.com has been visited by 10K+ users in the past month