Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.
The method of moments was introduced by Pafnuty Chebyshev for proving the central limit theorem; Chebyshev cited earlier contributions by Irénée-Jules Bienaymé. [2] More recently, it has been applied by Eugene Wigner to prove Wigner's semicircle law , and has since found numerous applications in the theory of random matrices .
The regularized incomplete beta function is the cumulative distribution function of the beta distribution, and is related to the cumulative distribution function (;,) of a random variable X following a binomial distribution with probability of single success p and number of Bernoulli trials n:
In probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a ...