Search results
Results from the WOW.Com Content Network
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
In chemistry, an alcohol (from Arabic al-kuḥl 'the kohl'), [2] is a type of organic compound that carries at least one hydroxyl (−OH) functional group bound to a saturated carbon atom. [ 3 ] [ 4 ] Alcohols range from the simple, like methanol and ethanol , to complex, like sugars and cholesterol .
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Discovered in 1895 by the Belgian chemist Louis Henry (1834–1913), it is the combination of a nitroalkane and an aldehyde or ketone in the presence of a base to form β-nitro alcohols. [1] [2] [3] This type of reaction is also referred to as a nitroaldol reaction (nitroalkane, aldehyde, and alcohol).
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
Acetaldehyde (IUPAC systematic name ethanal) is an organic chemical compound with the formula CH 3 CH=O, sometimes abbreviated as MeCH=O. It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being
They generally result from the nucleophilic addition of an alcohol (a compound with at least one hydroxy group) to an aldehyde (R−CH=O) or a ketone (R 2 C=O) under acidic conditions. The addition of an alcohol to a ketone is more commonly referred to as a hemiketal. Common examples of hemiacetals include cyclic monosaccharides.
Aldol reactions may proceed by two distinct mechanisms. Carbonyl compounds, such as aldehydes and ketones, can be converted to enols or enol ethers. These species, being nucleophilic at the α-carbon, can attack especially reactive protonated carbonyls such as protonated aldehydes. This is the 'enol mechanism'.