Search results
Results from the WOW.Com Content Network
Two-phase power can be derived from a three-phase source using two transformers in a Scott connection: One transformer primary is connected across two phases of the supply. The second transformer is connected to a center-tap of the first transformer, and is wound for 86.6% of the phase-to-phase voltage on the three-phase system.
A Dahlander motor (also known as a pole changing motor, dual- or two speed-motor) is a type of multispeed three-phase induction motor, in which the speed of the motor is varied by altering the number of poles; this is achieved by altering the wiring connections inside the motor.
A Scott-T transformer or Scott connection is a type of circuit used to produce two-phase electric power (2 φ, 90 degree phase rotation) [1] from a three-phase (3 φ, 120 degree phase rotation) source, or vice versa. The Scott connection evenly distributes a balanced load between the phases of the source.
The two two-phase windings, fixed at right (90°) angles to each other on the stator, produce a sine and cosine feedback current. The relative magnitudes of the two-phase voltages are measured and used to determine the angle of the rotor relative to the stator. Upon one full revolution, the feedback signals repeat their waveforms. This device ...
Free-body diagram of a U-channel synchronous linear motor. The view is perpendicular to the channel axis. The two coils at centre are mechanically connected, and are energized in "quadrature" (meaning a phase difference of 90° (π/2 radians) between the flux of the magnets and the flux of the coils). The bottom and upper coils in this ...
For example; a single-phase motor with 3 north and 3 south poles, having 6 poles per phase, is a 6-pole motor. A three-phase motor with 18 north and 18 south poles, having 6 poles per phase, is also a 6-pole motor. This industry standard method of counting poles results in the same synchronous speed for a given frequency regardless of polarity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The rotor operates at synchronous speeds without current-conducting parts. Rotor losses are minimal compared to those of an induction motor, however it normally has less torque. [2] [3] Once started at synchronous speed, the motor can operate with sinusoidal voltage. Speed control requires a variable-frequency drive.