Search results
Results from the WOW.Com Content Network
If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M.
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.
Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors , which contributed to the awarding of the 1926 Nobel Prize in ...
If the third axis is shorter, the ellipsoid is a sphere that has been flattened (called an oblate spheroid). If the third axis is longer, it is a sphere that has been lengthened (called a prolate spheroid). If the three axes have the same length, the ellipsoid is a sphere.
The unusual cosmic abundance of alpha nuclides has inspired geometric arrangements of alpha particles as a solution to nuclear shapes, although the atomic nucleus generally assumes a prolate spheroid shape. Nuclides can also be discus-shaped (oblate deformation), triaxial (a combination of oblate and prolate deformation) or pear-shaped. [7] [8]
Thus, geodesy represents the figure of the Earth as an oblate spheroid. The oblate spheroid, or oblate ellipsoid, is an ellipsoid of revolution obtained by rotating an ellipse about its shorter axis. It is the regular geometric shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other ...
In geophysics, geodesy, and related areas, the word 'ellipsoid' is understood to mean 'oblate ellipsoid of revolution', and the older term 'oblate spheroid' is hardly used. [4] [5] For bodies that cannot be well approximated by an ellipsoid of revolution a triaxial (or scalene) ellipsoid is used.
They are called oblate spheroidal wave functions if oblate spheroidal coordinates are used and prolate spheroidal wave functions if prolate spheroidal coordinates are used. [1] If instead of the Helmholtz equation, the Laplace equation is solved in spheroidal coordinates using the method of separation of variables, the spheroidal wave functions ...